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ON TWO APPROACHES TO THE STUDY OF THE EQUILIBRIUM STATES 
OF A NONHOLONOMIC MECHANICAL SYSTEM * 

TWO approaches to the study of equilibrium of a nonholonomic system are compared. 
The first approach utilizes the Lagrange's equations with undertermined multipliers, 
and the second approach uses the Chaplygin or Voronets equations. 

Il. ILIEV and Iv. RUSINOV 

It is shown in /l/ that the application of the Chaplygin equations to his systemsdoesnot 
yield the equilibrium states of the second kind, and use of the Voronets equation does not 
always produce a solution to this problem. The present paper shows that using the equations 
(4) and (21, one can always choose a system of admissible vectors (9) which will enable the 
determination of all equilibrium states of the second kind. The difference in the results ob- 
tained is due to the fact that equations (6) determining the equilibriumstatesarenotinvari- 
ant under the change of the system of admissible vectors. Equations determining the manifold 
of the equilibrium states (14) invariant under the change of admissible vectors are obtained. 

One of the approaches to the study of the position of equilibrium of a mechanical non- 
holonomic system acted upon by linear nonholonomic constraints, is based on the Lagrange's 
equations of motion with undetermined multipliers /1,2/ 

d aT 
--T-$=Q~-~$&+I~~o~P 
dt aq" il) 

0% 
Pg." =o (2) 

The indices h,p,~,e,x assume the values from 1 to n everywhere; P,q,r from k+ 1 to n,and a,b, r 

from 1 to k. The kinetic energy T =V2ghpq A ‘1’ is a quadratic form and the dissipative function q 

~(g, q')is assumed to be a semi-definite quadratic form of the generalized velocities. The 
equilibrium states are obtained from the relations 

Q, (Y> 0) i- hpwxP (‘I) _ 0 ( 3) 

Let us denote by unx the coordinates of the admissible vectors /3/. We introduce the 
quantities Gab = h gA,,ua ol, )I, GPP = &,,hPq,q and use them to obtain apit = gxvGp,o,' and exa = gxeGababe. It 
follows that the system (1) is equivalent to the following systems: 

(4) 

(5) 

Using the proposed method we can construct the characteristic equation without considering (5). 
Indeed, each equation of (5) has a corresponding column, in the determinant of the character- 

istic equation, in which one of the elements is unity and the rest are zero. Crossing out the 

columns and rows containing a unity leads to elimination of the corresponding equation. 
Equations (4) form together with (2) a system of differential equations in terms of admis- 

sible vectors (3). 
The second approach to the study of the equilibrium positions of a mechanical nonholonomic 

systeminvolves use of the systems (2) and (4) /4,5/. The advantage of this approach consisits 

in a reduced number of equations. The conditions of equilibrium are written in this case in 
the form 

Q,a," = 0 (6) 

The Voronets equations are obtained from (4) and (2) for the following system of admissible 
vectors: 
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a1 (1, 0, . . . . 0, --nlk+l, -&+a, ..,, -aln) 
a, (0, 1, . . . . 0, --apk”, --(I$+a, . . . . - aa”) 
. . . . ..-..........‘.... 

ak (0, 0, . . . . i, -a$+‘, --akk+*, . . . . -ak”) 

where the coefficients P 'h are given by the expressions 

B'P= P 1. al q’ + a,Pq’2 + + ah;Pq’k 

The Chaplygin equations represent a particular case of the Voronets equations when the expres- 
sions T,Q,== &i8q,,a$. F are independent of the variables * 9. Every mechanical system has an 
infinite set of admissible vectors satisfying the condition exp,x = 0. The passage from one 
system aaX to another 4," is carried out with help of the formulas 

aa, x= ya,%Xti* (~etllv,.all+ 0) 

However, as was already recorded in /I/, use of the Chaplygin, and at times the Voronets equa- 
tions in the study of equilibrium of a mechanical nonholonomic system does not lead to estab- 
lishing the positions of equilibrium of the second kind of the system. We shall show howthis 
canbetaken into account when choosing the suitable admissible vectors. 

Let us assume that W,P are holomorphic functions of the variables 4". We can always 
impart the same properties to a,". Taking into account the fact that (2) is independent, we 
can write their solutions in q'k+*, . . . . q'" as follows: 

e,Pq’a + 8$'Aq'r = 0 (7) 
A=detIIwpP!J+O (8) 

Condition (81 always holds when the indices of the generalized coordinates are suitablyinter- 
changed. The method of obtaining G' and A clearly implies that theyareholomorphic functions 
of the generalized coordinates. We can choose 

aa(AD,,', A&,',. . ., Abak, - fiff', - ep',.. ., F,“) (9) 

as the admissible vectors with holomorphic coordinates. 
When the admissible vectors are chosen incorrectly, then, as was shown in /l/, the equil- 

ibrium state of the second kind may become inaccessible. Let us analyze the reasons of it. 
We write the equations (1) in the following form 

and differentiate the constraint equations (2) with respect to time. Using (10) we obtain 

Thus the Lagrange multipliers are given in the form of functions of the generalized coordin- 
ates 4" and velocities P. In the state of equilibrium we have 

hp = -GWQx#XPepq (12) 

Substituting (12) and (3) into (6) and using the relation 

+ = C"be~%b~+GP~aphaq~ (13) 

we obtain 

QXaaxePa = 0 
(14) 

The formula (14) yields the equations determining the manifolds of equilibrium states of the 
system. Every solution of (6) is also a solution of (14), although the converse is not al- 
ways true. The change a,,= yd,%,, of the system of admissible vectors does not alter the condi- 
tions (141, but reduces the conditions (6) to the form 

Q,a,X~/ = 0 (15) 

Conditions QP=O and hb=&,b hold for the Chaplygin systems. In this casethecondition 
(6) becomes Qn=O and yields the equilibrium state of the firstkindonly /l/. Formula (14) 
yields all equilibrium states. The relations (6) are not invariant under the change of admis- 
sible vectors. 

Formula (14) was derived under the condition that the equations of the system (2) are 
mutuallyindependentand deti/gku li#O- We shall call the points at which the basic requirements 
are violated the singular points of the manifold of the equilibrium states. 
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We shall illustrate the above arguments by considering the problem of equilibrium of a 
Chaplygin sledge on a sloping plane /2/. We write the Lagrange's function 

L = '/smI(.z' + Q‘cas o,)* i_ (y‘ + 19’ sin r# + k20'Z] - mgsin a (y - 1 cos q) 

and introduce the dissipative function 

F = '/rm[h(z'2 + y's) + hl(p'*] 

The nonholonomic constraint is given by the equation y' = 2' tg cp. 
We put ql=‘p, q2= z, g”= y and introduce the admissible vectors 

a, (I, 0, 01, a, (0, e0s 9, sin y), 0% (0, - sin v, cos rp) 

The conditions of equilibrium are obtained, according to (6), in the form 

+ = 0, 

116) 

(17) 

Using the relations 

1 
cnznakZ, c22=~, L.'"=G"_--_ 

we obtain from (141 

-gL” (g cosy++ly cosy=o, ) (-$cos~+~sinp)sing,=O (18) 

Solutions of (17) and (18) yield the same manifold of equilibriumstateswbichwasobtained 

in j2.l. When the Chaplygin vectors 

are chosen according to the formula 

It appears that there are no values 
Computing I 

a1 (1% 0, ot, n, (0, WJ ‘p. 1) (19) 

(6), we obtain 

au/do = 0,aday = 0 (20) 

of the variables S,Y and 'p which satisfy the relations (20). 

and substituting them into (14), we again arrive at the equations (18). This is as expected, 
since we have established the invariance of (14). The passage from .one set of admissible 
vectors to another, is determined by the system 

y:. = 1, $,= 0, $, = 0, $. = ltsin cp 

The results obtained according to formula (61 using the admissible vectors (16) and (19) do 
not coincide, since the coefficient &= llsinq. loses its meaning in the manifold of the equil- 
ibrium states. 
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